A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations

نویسندگان

  • Krzysztof J. Fidkowski
  • David L. Darmofal
چکیده

This paper presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier–Stokes equations. A key feature of this method is a cut-cell meshing technique, in which the triangles are not required to conform to the boundary. This approach permits anisotropic adaptation without the difficulty of constructing meshes that conform to potentially complex geometries. A quadrature technique is proposed for accurately integrating on general cut cells. In addition, an output-based error estimator and adaptive method are presented, appropriately accounting for high-order solution spaces in optimizing local mesh anisotropy. Accuracy on cut-cell meshes is demonstrated by comparing solutions to those on standard, boundary-conforming meshes. Robustness of the cut-cell and adaptation technique is successfully tested for highly anisotropic boundary-layer meshes representative of practical high Re simulations. Furthermore, adaptation results show that, for all test cases considered, p 1⁄4 2 and p 1⁄4 3 discretizations meet desired error tolerances using fewer degrees of freedom than p 1⁄4 1. 2007 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Simplex Cut-Cell Method for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations

A cut-cell adaptive method is presented for high-order discontinuous Galerkin discretizations in two and three dimensions. The computational mesh is constructed by cutting a curved geometry out of a simplex background mesh that does not conform to the geometry boundary. The geometry is represented with cubic splines in two dimensions and with a tesselation of quadratic patches in three dimensio...

متن کامل

Output-based Adaptive Meshing Using Triangular Cut Cells

This report presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier-Stokes equations. The method uses a mesh of triangular elements that are not required to conform to the boundary. This triangular, cut-cell approach permits anisotropic adaptation without the difficulty of constructing meshes that conform...

متن کامل

A Simplex Cut-Cell Adaptive Method for High-Order Discretizations of the Compressible Navier-Stokes Equations

While an indispensable tool in analysis and design applications, Computational Fluid Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometryto-solution process. This thesis presents two ideas for improving automation and robustness in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh...

متن کامل

p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations

We present a p-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of the compressible Navier–Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of elements are formed using coupling based on a p = 0 discretization of the scalar convection–diffusion equation. Fourier analysis of the two-level p-multigrid algorith...

متن کامل

Efficient Algorithms for High-Order Discretizations of the Euler and Navier-Stokes Equations

Higher order discretizations have not been widely successful in industrial applications to compressible flow simulation. Among several reasons for this, one may identify the lack of tailor-suited, best-practice relaxation techniques that compare favorably to highly tuned lower order methods, such as finite-volume schemes. In this paper we investigate efficient Spectral Difference discretization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 225  شماره 

صفحات  -

تاریخ انتشار 2007